Identifying Gene Regulatory Network as Differential Equation by Genetic Programming
نویسندگان
چکیده
This paper proposes an evolutionary method of identifying the gene regulatory network represented as a differential equation system. As the technology in DNA micro arrays has developed, large quantities of gene’s expression data are becoming more available. As a result, it is essential to get information as to the gene regulatory network from the observed data of gene’s expression. Among many proposed models to describe a gene network, we have chosen the differential equation system since it can represent complex relations among components. In the previous studies [1], the form of the differential equation is being fixed during the learning so that the ultimate goal of the identification is to optimize parameters, i.e., coefficients, in the fixed equation. On the other hand, for the sake of the flexibility of the model, we allow an arbitrary form of functions in the right-hand side of the differential equation (eq. (1)). dXi/dt = fi(X1, X2, . . . , Xn) (1)
منابع مشابه
Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملInferring a System of Differential Equations for a Gene Regulatory Network by using Genetic Programming
This paper describes an evolutionary method for identifying the gene regulatory network from the observed time series data of the gene’s expression. We use a system of ordinary differential equations as a model of the network and infer their right-hand sides by using Genetic Programming (GP). To explore the search space more effectively in the course of evolution, the least mean square (LMS) me...
متن کاملInference of Differential Equation Models by Multi Expression Programming for Gene Regulatory Networks
This paper presents an evolutionary method for identifying the gene regulatory network from the observed time series data of gene expression using a system of ordinary differential equations (ODEs) as a model of network. The structure of ODE is inferred by the Multi Expression Programming (MEP) and theODE’s parameters are optimized by using particle swarm optimization (PSO). The proposed method...
متن کاملUsing Mutual Information and Answer Set Programming to refine PWM based transcription regulation network
Transcriptional regulatory network models can be reconstructed ab initio from DNA sequence data by locating the binding sites, defined by position specific score matrices, and identifying transcription factors by homology with known ones in other organisms. In general the resulting network contains spurious elements, because the pattern matching methods for binding site location have low specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000